Subject knowledge has enjoyed a recent rehabilitation within education. Whilst there are groups ideologically opposed to teaching content (either on the grounds that it ‘stifles creativity’ or amounts to ‘indoctrination’), the simple fact that children and schools are typically assessed using external exams which test subject knowledge means that developing effective ways of teach knowledge will be important for the foreseeable future.
Furthermore, knowledge is not a limiting factor on our wider ambitions for students. I want mine to reason critically, understand and apply complex ideas. I need them to evaluate theories whilst avoiding over-reliance on straw-men, over-simplification of the debate, or glib dismissal of evidence. The foundation stone for these higher-order ‘skills’ is their knowledge of the subject.
However, there was an interesting discussion on twitter about whether knowledge was both necessary and sufficient for understanding. It’s an interesting question – given the evidence that teaching knowledge is so important – so I set myself the task of trying to generate some counter-examples.
Is knowledge sufficient for understanding?
My argument would be that it is not.
Psychologists from Piaget to Sweller couch learning in terms of the acquisition and refinement of schema. One of the limitations, I hypothesise, of direct instruction techniques is the fact that students do not come to us ‘tabula rasa’ – rather they come with many preconceptions already in place. These preconceptions – Geary dubs them ‘folk physics’ or ‘folk biology’, etc – are sometimes extraordinarily difficult to change; even after the scientific knowledge has been taught and recalled successfully under exam conditions.
A classic example of this comes from Taber’s work on chemical misconceptions for the Royal Society of Chemistry (Source: H.-D. Barke et al., Misconceptions in Chemistry) :
“When people are given a piece of wood and asked how the material got into the tree they commonly reply that most of it came from the soil’’. Even though, in biology, the subject of photosynthesis is taught with the use of carbon dioxide, water, light and heat for the synthesis of sugar and starch, still many students when asked where wood comes from, reply: ‘‘from the soil’’. Most students seem to have their knowledge of biology lectures in special ‘‘compartments’’ of their brain. They do not link them to their every-day life understanding: ‘‘Presumably most of the graduates would have been able to explain the basics of photosynthesis (had that been the question), but perhaps they had stored their learning about the scientific process (where carbon in the tree originates from gaseous carbon dioxide in the air) in a different compartment from their ‘everyday knowledge’ that plants get their nutrition from the soil”
This has been my experience as a science teacher. KS3 pupils who could explain photosynthesis to me, write a word equation and sometimes even balance up the chemical formula equation – would quite happily say ‘the soil’ when asked where the ‘wood of a tree’ comes from. Indeed, I’ve used this question in CPD sessions and some teachers give that answer too …
This is just one example – but the Misconceptions in Chemistry article has lots more – but I think it’s a case of where effective transmission of subject knowledge alone does not necessarily lead to scientifically accurate understanding. Now – misconceptions aren’t the be-all-and-end-all, but how well different instructional techniques correct misconceptions, I suggest, represents an important test of efficacy.
Can you have understanding without knowledge?
Again, I think possibly yes (in a highly limited sense).
A powerful tool in science teaching is the use of analogy. One of the benefits of analogies is that it allows the expression of concepts in the absence of the complex subject knowledge that would ordinarily allow you to derive the same understanding.
I posted an example recently – using a motorway analogy to teach the behaviour of current and voltage in circuits. The analogy takes away some of the (often confusing for novice learners) knowledge components (e.g. what are Coulombs and how energy is transferred by the movement of electrical charge) and provides a simplified conceptual model so that students can reason about the behaviour of the circuit without getting hung up on the complexities of Kirchhoff’s law. Analogies are an effective way to teach science – possibly because they reduce the cognitive load when teaching a difficult concept.
Whilst eventually students will need to tackle the specifics of that subject knowledge – using analogies allows Y7s to get to quickly get to grips with the basics of circuit behaviour. Pupils recognise that there aren’t really cars (or coal trucks) zooming around a motorway, or thieves stealing petrol, but the concrete objects involved help them more quickly accommodate the new (and sometimes counter-intuitive) ideas involved.
Conclusion
We need to consider knowledge and conceptual understanding when evaluating instructional techniques. The efficacy of different instructional techniques in successfully challenging misconceptions would be an interesting RCT (*if any readers know one – please contact me!). However, the persistence of misconceptions and the success of teaching through analogies might imply that conceptual understanding can sometimes be more than the sum of the content knowledge involved.
I will say though, that discovery learning techniques appear to fare somewhat worse when it comes to teaching concepts and challenging misconceptions (e.g. Kirschner). At an anecdotal level, I’ve had Y7s merrily come up to me at the end of a ‘discovery’ practical on electrical circuits and report that adding a bulb in a parallel circuit made both bulbs go dim – because that’s what they expected should be the right answer – so they ‘corrected’ the result!
Reblogged this on The Echo Chamber.
LikeLike
I think this blog by Willingham is really interesting here because it makes the point that understanding is not all or nothing. http://www.danielwillingham.com/1/post/2013/12/more-on-developmentally-appropriate-practice.html
That is why students can know about photosynthesis but still answer soil. The question is what do the students need to get the right answer. They need a deeper immersion in the relevant material. It is a bit like Willingham’s point about ‘deep structure’ to problems. The only solution is greater familiarity with the material, i.e. knowledge rather than a qualitatively different thing called understanding.
LikeLike
Hi – thanks for the comment. I agree that the Willingham article makes an excellent point about how researchers into child cognition have frequently underestimated the capabilities of young children. Since Piaget proposed his stages of development, swathes of research has shown his ideas about object permanence, egocentrism and conservation aren’t supported when you construct experiments that avoid demand characteristics. However, I’m not sure how his article supports your point.
Taber did his experiment on biology undergraduates – so the suggestion that they simply weren’t sufficiently familiar with the material doesn’t quite hold up (I’d suggest). It seems more reasonable to suggest that they possessed stable and complex schema relating to plant biology – but that those schema simply weren’t activated when the question was posed in a way that tested whether ‘folk biology’ schema had successfully changed. ‘Deeper immersion’ also would need some sort of operationalisation before I’d agree or disagree that biology students at university level were lacking in it.
My point isn’t that ‘knowledge isn’t important’ – I think it is! – but the proposition that effective learning requires both the transmission of new schema and the successful challenging of schema already in-situ. The qualitative difference between knowledge and understanding might be the difference between the acquisition of knowledge schema and their organisation. In the case of misconceptions, a student can acquire the appropriate schema to reason scientifically on a subject – but still have unmodified ‘folk knowledge’ schema intact and in competition with them.
LikeLiked by 1 person
I entirely see your point about knowledge not challenging the existing ‘folk schema’. I would have thought that this is just a quite stark example of how understanding is not all or nothing as Willingham explains. When I taught my son place value he displayed great understanding until I used the same idea in a new context. Then it appeared he had no understanding at all. Knowledge of the concept approached from different angles is the remedy. Realistically the words knowledge and understanding can surely be used interchangeably? A good teacher is one that knows likely that when an idea is presented in certain contexts misconceptions are likely. They give knowledge/understanding in that context to avoid this.
LikeLiked by 1 person
Pingback: Conflicted about cognitive conflict | Evidence into practice
“A good teacher is one that knows likely that when an idea is presented in certain contexts misconceptions are likely.”
Yes, there’s also some evidence to support that view: https://evidenceintopractice.wordpress.com/2014/07/05/whats-important-about-subject-knowledge/
I suppose the question for me is whether it is simply a case of anticipating the possible directions by which the knowledge might need to be accessed or whether the idea of ‘cognitive conflict’ has any value.
I wrestle with that question here: https://evidenceintopractice.wordpress.com/2014/06/20/conflicted-about-cognitive-conflict/
LikeLike